Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 591: 216879, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636895

ABSTRACT

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.

2.
Alzheimers Dement ; 20(3): 1515-1526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38018380

ABSTRACT

INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnosis , Galectin 3/genetics , Galectin 3/metabolism , tau Proteins/cerebrospinal fluid , Brain/pathology , Biomarkers/cerebrospinal fluid , C9orf72 Protein/genetics , Mutation/genetics
3.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Article in English | MEDLINE | ID: mdl-37202527

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Subject(s)
Galectin 3 , Parkinson Disease , Animals , Humans , Mice , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Galectin 3/metabolism , Lewy Bodies/metabolism , Parkinson Disease/metabolism
5.
Mol Neurodegener ; 17(1): 62, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153580

ABSTRACT

ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-ß plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-ß load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/metabolism , Genotype , Neurodegenerative Diseases/genetics , Plaque, Amyloid/pathology , tau Proteins/genetics
6.
Acta Neuropathol ; 144(5): 843-859, 2022 11.
Article in English | MEDLINE | ID: mdl-35895141

ABSTRACT

Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aß plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-ß. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-ß positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Biomarkers/cerebrospinal fluid , Brain/pathology , Chitinase-3-Like Protein 1/metabolism , GAP-43 Protein/metabolism , Galectin 3 , Humans , Mice , Neurogranin , Plaque, Amyloid/pathology , beta-Galactosidase/metabolism , tau Proteins/metabolism
7.
J Parkinsons Dis ; 12(s1): S165-S182, 2022.
Article in English | MEDLINE | ID: mdl-35662128

ABSTRACT

Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson's disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1ß, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Dextran Sulfate , Disease Models, Animal , Lipopolysaccharides/pharmacology , Microglia/metabolism , Models, Animal , Parkinson Disease/pathology , Substantia Nigra/pathology , Thrombin , alpha-Synuclein/metabolism
8.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163089

ABSTRACT

Lipopolysaccharide (LPS)-induced endotoxemia induces an acute systemic inflammatory response that mimics some important features of sepsis, the disease with the highest mortality rate worldwide. In this work, we have analyzed a murine model of endotoxemia based on a single intraperitoneal injection of 5 mg/kg of LPS. We took advantage of galectin-3 (Gal3) knockout mice and found that the absence of Gal3 decreased the mortality rate oflethal endotoxemia in the first 80 h after the administration of LPS, along with a reduction in the tissular damage in several organs measured by electron microscopy. Using flow cytometry, we demonstrated that, in control conditions, peripheral immune cells, especially monocytes, exhibited high levels of Gal3, which were early depleted in response to LPS injection, thus suggesting Gal3 release under endotoxemia conditions. However, serum levels of Gal3 early decreased in response to LPS challenge (1 h), an indication that Gal3 may be extravasated to peripheral organs. Indeed, analysis of Gal3 in peripheral organs revealed a robust up-regulation of Gal3 36 h after LPS injection. Taken together, these results demonstrate the important role that Gal3 could play in the development of systemic inflammation, a well-established feature of sepsis, thus opening new and promising therapeutic options for these harmful conditions.


Subject(s)
Disease Models, Animal , Endotoxemia/pathology , Galectin 3/physiology , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages, Peritoneal/immunology , Animals , Endotoxemia/etiology , Endotoxemia/metabolism , Inflammation/etiology , Inflammation/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
J Clin Invest ; 132(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35113813

ABSTRACT

New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.


Subject(s)
Antineoplastic Agents , Glioblastoma , Antineoplastic Agents/therapeutic use , Arginine , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Humans , Hydrolases , Microglia , Polyethylene Glycols
10.
Front Pharmacol ; 12: 706439, 2021.
Article in English | MEDLINE | ID: mdl-34483912

ABSTRACT

Parkinson's disease is a highly prevalent neurological disorder for which there is currently no cure. Therefore, the knowledge of risk factors as well as the development of new putative molecular targets is mandatory. In this sense, peripheral inflammation, especially the originated in the colon, is emerging as a predisposing factor for suffering this disease. We have largely studied the pleiotropic roles of galectin-3 in driving microglia-associated immune responses. However, studies aimed at elucidating the role of galectin-3 in peripheral inflammation in terms of microglia polarization are lacking. To achieve this, we have evaluated the effect of galectin-3 deletion in two different models of acute peripheral inflammation: intraperitoneal injection of lipopolysaccharide or gut inflammation induced by oral administration of dextran sodium sulfate. We found that under peripheral inflammation the number of microglial cells and the expression levels of pro-inflammatory mediators take place specifically in the dopaminergic system, thus supporting causative links between Parkinson's disease and peripheral inflammation. Absence of galectin-3 highly reduced neuroinflammation in both models, suggesting an important central regulatory role of galectin-3 in driving microglial activation provoked by the peripheral inflammation. Thus, modulation of galectin-3 function emerges as a promising strategy to minimize undesired microglia polarization states.

11.
Front Immunol ; 11: 2069, 2020.
Article in English | MEDLINE | ID: mdl-32973815

ABSTRACT

COVID-19 disease have become so far the most important sanitary crisis in the XXI century. In light of the events, any clinical resource should be considered to alleviate this crisis. Severe COVID-19 cases present a so-called cytokine storm as the most life-threatening symptom accompanied by lung fibrosis. Galectin-3 has been widely described as regulator of both processes. Hereby, we present compelling evidences on the potential role of galectin-3 in COVID-19 in the regulation of the inflammatory response, fibrosis and infection progression. Moreover, we provide a strong rationale of the utility of measuring plasma galectin-3 as a prognosis biomarker for COVID-19 patients and propose that inhibition of galectin-3 represents a feasible and promising new therapeutical approach.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Galectin 3/antagonists & inhibitors , Galectin 3/blood , Molecular Targeted Therapy/methods , Pneumonia, Viral/drug therapy , Pulmonary Fibrosis/drug therapy , Severity of Illness Index , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/chemistry , Biomarkers/blood , Blood Proteins , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Disease Progression , Galectins , Host-Pathogen Interactions/immunology , Humans , Inflammation/drug therapy , Inflammation/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prognosis , Pulmonary Fibrosis/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899400

ABSTRACT

Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. The ubiquitin-proteasome system (UPS) plays a fundamental role in maintaining protein homeostasis, being involved in protein degradation, among other cellular functions. Through a cascade of enzymatic reactions, proteins are ubiquitinated, tagged, and translocated to the proteasome to be degraded. Within the ubiquitin system, we can find three main groups of enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin-protein ligases). Only the ubiquitinated proteins with specific chain linkages (such as K48) will be degraded by the UPS. In this review, we describe the relevance of this system in NMDs, summarizing the UPS proteins that have been involved in pathological conditions and neuromuscular disorders, such as Spinal Muscular Atrophy (SMA), Charcot-Marie-Tooth disease (CMT), or Duchenne Muscular Dystrophy (DMD), among others. A better knowledge of the processes involved in the maintenance of proteostasis may pave the way for future progress in neuromuscular disorder studies and treatments.


Subject(s)
Neuromuscular Diseases/physiopathology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Animals , Humans , Neuromuscular Diseases/enzymology , Ubiquitination
13.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618637

ABSTRACT

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Subject(s)
DNA-Binding Proteins/metabolism , Microglia/metabolism , Proto-Oncogene Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/veterinary , Amyloid/metabolism , Animals , Brain/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer Elements, Genetic , Humans , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transcription Factor RelA/metabolism , Transcription, Genetic/drug effects
14.
EMBO J ; 38(17): e101997, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31373067

ABSTRACT

Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.


Subject(s)
Microglia/classification , Animals , Cell Plasticity , Humans , Microglia/immunology , Phenotype
15.
Acta Neuropathol ; 138(2): 251-273, 2019 08.
Article in English | MEDLINE | ID: mdl-31006066

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aß) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer's disease) mice and found specifically expressed in microglia associated with Aß plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aß. Gal3 deletion decreased the Aß burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aß monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aß aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2-DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.


Subject(s)
Alzheimer Disease/immunology , Galectin 3/physiology , Membrane Glycoproteins/physiology , Microglia/metabolism , Receptors, Immunologic/physiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/immunology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Cells, Cultured , Disease Models, Animal , Female , Galectin 3/toxicity , Genetic Predisposition to Disease , Genome-Wide Association Study , Hippocampus/drug effects , Hippocampus/pathology , Humans , Inflammation , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Molecular Targeted Therapy , Polymorphism, Single Nucleotide , Protein Aggregation, Pathological
16.
Neural Regen Res ; 14(5): 767-768, 2019 May.
Article in English | MEDLINE | ID: mdl-30688259
17.
Prog Neurobiol ; 171: 50-71, 2018 12.
Article in English | MEDLINE | ID: mdl-30290215

ABSTRACT

Microglia, the resident immune cells of the brain, can acquire various cell phenotypes based on their location and current role. This level of plasticity is required to fulfil the vast variety of functions that microglia perform. Adequate microglial functions are crucial for a healthy brain. However, microglial activation can also contribute to both degenerative/traumatic and proliferative diseases. We review current evidence supporting roles for caspases, a family of proteases, in the overall control of microglia, from the regulation of their activation, their biological functions, to their death. Further, we discuss possible roles for these microglial caspase-dependent signaling pathways in brain diseases.


Subject(s)
Apoptosis/physiology , Caspases/metabolism , Microglia/metabolism , Signal Transduction/physiology , Animals , Humans , Neurons
18.
Front Cell Neurosci ; 12: 313, 2018.
Article in English | MEDLINE | ID: mdl-30297984

ABSTRACT

Microglia, the resident immune cells of the brain, have multiple functions in physiological and pathological conditions, including Alzheimer's disease (AD). The use of primary microglial cell cultures has proved to be a valuable tool to study microglial biology under various conditions. However, more advanced transfection methodologies for primary cultured microglia are still needed, as current methodologies provide low transfection efficiency and induce cell death and/or inflammatory activation of the microglia. Here, we describe an easy, and effective method based on the Glial-Mag method (OZ Biosciences) using magnetic nanoparticles and a magnet to successfully transfect primary microglia cells with different small interfering RNAs (siRNAs). This method does not require specialist facilities or specific training and does not induce cell toxicity or inflammatory activation. We demonstrate that this protocol successfully decreases the expression of two key genes associated with AD, the triggering receptor expressed in myeloid cells 2 (TREM2) and CD33, in primary microglia cell cultures.

19.
Cell Death Dis ; 9(10): 973, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250197

ABSTRACT

In this study, we took advantage of human-induced pluripotent stem cells (hiPSC) and CRISPR/Cas9 technology to investigate the potential roles of RIPK1 in regulating hematopoiesis and macrophage differentiation, proinflammatory activation, and cell death pathways. Knock-out of RIPK1 in hiPSCs demonstrated that this protein is not required for erythro-myeloid differentiation. Using a well-established macrophage differentiation protocol, knock-out of RIPK1 did not block the differentiation of iPSC-derived macrophages, which displayed a similar phenotype to WT hiPSC-derived macrophages. However, knock-out of RIPK1 leads to a TNFα-dependent apoptotic death of differentiated hiPSC-derived macrophages (iPS-MΦ) and progressive loss of iPS-MΦ production irrespective of external pro-inflammatory stimuli. Live video analysis demonstrated that TLR3/4 activation of RIPK1 KO hiPSC-derived macrophages triggered TRIF and RIPK3-dependent necroptosis irrespective of caspase-8 activation. In contrast, TLR3/4 activation of WT macrophages-induced necroptosis only when caspases were inhibited, confirming the modulating effect of RIPK1 on RIPK3-mediated necroptosis through the FADD, Caspase-8 pathway. Activation of these inflammatory pathways required RIPK3 kinase activity while RIPK1 was dispensable. However, loss of RIPK1 sensitizes macrophages to activate RIPK3 in response to inflammatory stimuli, thereby exacerbating a potentially pathological inflammatory response. Taken together, these results reveal that RIPK1 has an important role in regulating the potent inflammatory pathways in authentic human macrophages that are poised to respond to external stimuli. Consequently, RIPK1 activity might be a valid target in the development of novel therapies for chronic inflammatory diseases.


Subject(s)
Apoptosis/physiology , Cell Differentiation/physiology , Inflammation/metabolism , Macrophages/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , CRISPR-Cas Systems/genetics , Caspase 8/metabolism , Gene Editing , Gene Knockout Techniques , Hematopoiesis/physiology , Humans , Induced Pluripotent Stem Cells/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
Mol Neurobiol ; 55(12): 8856-8868, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29603094

ABSTRACT

A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.


Subject(s)
Axons/metabolism , Myelin Sheath/metabolism , Peripheral Nervous System/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Evoked Potentials , Mice , Mice, Neurologic Mutants , Models, Biological , Mutation/genetics , Myelin Basic Protein/metabolism , Neuromuscular Junction/metabolism , Phosphorylation , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/ultrastructure , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...